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A M O D E L  F O R  T H E  F O R M A T I O N  OF F U L L E R E N E S  

IN C A R B O N  V A P O R  

G. I. Sukhin in  and O. A. Nerushev UDC 532.517.4+533.92+546.26 

I n t r o d u c t i o n .  The discovery of hollow C60 and C70 and other fullerenes [1] (a new form of carbon) 
aroused interest in their properties. The method developed in 1990 for the production of fullerenes in 
macroscopic quantities by combustion of a graphite arc in atmospheres of noble gases (a so-called fullerene 
factory) [2] has considerably expanded the possibilities of conducting experiments with fullerenes. It has been 
shown that fullerenes could hold promise in the production of superconducting materials [3], diamonds, and 
diamond-like coatings [4]. Furthermore, fullerenes are important for ecological and medicinal applications [5]. 

On the other hand, the formation of fullerenes (molecules having an extremely high symmetry) from 
the high-temperature chaos in an electric-arc plasma has not been adequately studied. The high productivity 
of "fullerene factories" (the yield of fullerenes amounts to 10-15~ of the total content of evaporated carbon) 
requires explanation. It has been established that the fullerene yield depends greatly on the geometrical 
parameters of reactors and electrodes, on the arc current, and on the composition and pressure of the ambient 
gas. To determine the optimal conditions of fullerene formation, it is necessary to develop a model that takes 
into account the processes in the arc, the gas dynamics of the flow of carbon vapor and buffer gas, and the 
collision kinetics during carbon-cluster formation. 

Many papers have been devoted to the kinetics of carbon-cluster formation [6-10]. It has been 
established [9, 10] that  carbon clusters Ck have differentspatial structures. However, the modeling of carbon- 
cluster formation using the Smoluchowski equations has been performed [6-8] ignoring the isomer composition 
and structure of the clusters. 

t 

In this paper, we propose a gas-dynamic and kinetic model for the formation of carbon clusters in 
a graphite arc (a Kratschmer-Hoffman fullerene factory) burning in a helium or an argon atmosphere. It 
is shown that carbon vapor issuing from the slot gap between graphite electrodes into a helium (argon) 
atmosphere forms a turbulent radial jet. The kinetic equation of cluster formation in this jet describes the 
unsteady clustering of the finite mass of carbon vapor in the heat of the inert gas (At or He). 

In the paper, we use the Smoluchowski equations, which take into account collisions of clusters of 
various spatial structures with one another that lead to coagulation. We propose a method which takes into 
account the spatial structure and rotation of clusters in a first approximation and allows one to determine 
qualitatively the effectiveness of cross sections of cluster collisions. 

The proposed model of carbon cluster formation describes the experimentally observed size distribution 
of fullerenes and the dependence of the yield of fullerenes on the main determining parameters of a graphite 
arc reactor. 

1. Flow of  C a r b o n  V a p o r  f rom a G r a p h i t e  Arc .  Figure 1 shows a diagram of a "fullerene factory" 
using a contact graphite arc [11]. A setup of this type was first used in [2] and then in [12, 13]. The water- 
cooled cylinder 2, 100 mm in diameter and 150 mm long, is placed inside the vacuum chamber 1 evacuated by 
a roughing-down pump to 10 Pa. The movable replaceable anode 3 with diameter 6 mm and the expendable 
cathode 4 with diameter of 10 to 20 mm are located along the cylinder axis. The electrodes are made of pure 
pyroelectric graphite. The cathode is electrically insulated from the body and fitted with a mechanical seal 
for translational motion along the axis, and the anode is electrically connected with the chamber. 
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After preliminary evacuation, the chamber is filled with an inert gas (usually He) to a pressure of the 
order of 103-5 �9 104 Pa. A pressure of U = 18-25 V and a current of I = 100 A are applied to the electrodes, 
which initially fit snugly to one another.  As the anode burns, the cathode performs longitudinal motion at a 
rate of about 1 cm/min .  

Most of the evaporated graphi te  in the form of a carbon vapor jet  mixed with helium enters the working 
chamber at a flow rate of the  order of 0.01 g/sec, and the remaining part is transferred from the anode to 
the wider cathode. After turning-off of the voltage, the chamber is cooled and depressurized, carbon black is 
removed from the walls of the  internal cylinder, and the anode is replaced. 

During the  burning of the  arc, the  electrode tempera ture  is maintained at 3500 K as a result of intense 
evaporation of graphite,  while the  arc tempera ture  can reach 11,000 K [14]. 

The combustion physics in a high-current arc is extremely complex and includes plasma, gas-dynamic, 
and radiation processes [13, 14]. No qualitative description of these processes is presently available. It is 
known, however, that  the  thermal  evaporation of electrodes leads to the formation of a t u r b u l e n t  vapor jet, 
which interacts with the  ambient  gas [15, 16]. The  gas flow in a high-current arc is de termined by the effect 
of the intrinsic magnet ic  field. For an extended arc, according to the approximate theory of [16], a limiting 
velocity is rapidly a t ta ined on the axis of the anode jet. This velocity is given by 

( #oI 2 ~o.s 
v~ = \ 4 - - ~ p /  ' (1.1) 

where I is the arc current,  S is the cross-sectional area of the arc, p is the  density of the ambient  gas, and #0 is 
the magnetic permeabili ty of vacuum. For a contact arc, the flow pat tern is more complicated because of the 
interaction between the jet and the electrodes. The  gas jet does not have t ime to reach the limiting velocity 
because of the narrow electrode gap, and the streamlines turn perpendicular to the  arc axis. To determine the 
flow regime, one can es t imate  the characteristic Reynolds numbers by using relation (1.1) for the velocity. A 
Reynolds number  higher than  50 was obtained for the flow of a mixture  of hel ium and carbon at a pressure 
higher than 103 Pa, a current  of 100 A, and an electrode diameter  about 1 cm. As a result, it is concluded 
that  a radial turbulent  gas jet  is formed which carries the electrode-erosion material.  

The qualitative flow pat te rn  in the slotted gap is shown in Fig. 2 (A is the anode, C' is the cathode, and 
W is the water-cooled wall). The  carbon concentration in the jet  is determined by the pressure of saturated 
vapors and the electrode temperatures .  At T = 3000 K, for example, the pressure of sa turated carbon vapors 
above graphite is 100 Pa [17]. The  boiling point of graphite is about  4000 K, but,  for an arc current of 200 
A, the electrode tempera ture  varies from 3400 to 3600 K. 

Gas Flow in the Radial Jet from a Contact Arc. We consider a simplified model for the carbon vapor 
flow in a turbulent  radial jet  of a carrier gas (He or Ar) assuming that  the admixture  does not affect the 
flow structure because of the small carbon concentration. The  theory of turbulent  jets [18, 19] is largely 
semiempirical and is based on various assumptions of turbulent  mixing or turbulent  viscosity. We follow the 
G6rtler theory and apply it to the problem of a radial jet. 
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We consider a slotted gap having half-width b0 and radius r0. Assume tha t  the gas flow is isobaric 
everywhere beyond the slotted gap. This is supported by the velocity values obtained using formula (1.1): the 
velocity is subsonic for the given gas composition and temperature.  In this case, the gas jet flow is described 
by the equations of continuity and motion in the boundary-layer approximation: 

0 
1 ( p u t )  + ~z(pV) -- O; (1.2) 
F 

cOu c3u c32u 
pU-~r + PV-~z = p v t O z  2 �9 (1.3) 

Here u and v are the  radial and axial velocities, vt is the turbulent  kinematic viscosity, which, according to the 
Gbrtler theory, is assumed to be constant at each cross section of the jet: vt = zetb(r)(Um - uoo), b(r)  = k t r  is 
the thickness of the jet  mixing zone, um is the max imum flow velocity on the jet axis, uco = 0 is the minimum 
velocity on the jet  boundary  or the velocity of the cocurrent flow (for the buoyant jet ,  uoo = 0), and zet and 
kt are empirical constants.  

We assume tha t  the gas flow is incompressible ( the l imitation of this assumption is considered below). 
Then, system (1.2) and (1.3) can be solved by introducing the stream function q2: 

0~ O~ 
u r  = uoro O z '  v r  = - u o r o  Or"  (1.4) 

In this case, the continuity equation (1.2) is fulfilled automatically. The  solution of Eq. (1.3) will be sought 
in self-similar form by introducing the coordinates r and ~o = a z / r  ((7 is a constant tha t  characterizes the jet 
divergence). The  introduction of the self-similar variables is equivalent to considering an effective point source 
with a given m o m e n t u m  flux in the plane of jet propagation. As usual, for the radial velocity we assume [19] 
that  

u r  = uoroF'(~o),  F'(0)  = 1 (1.5) 

(the prime denotes differentiation with respect to the self-similar variable ~o). Hence, 
o o  

T h e n ,  for the axial velocity v w e  have 

? ) r  - "  - -  

qt = / u r d z  - u ~ 1 7 6  
O" 

(1.6) 

u0r0 (F ' (~)  - F ) ,  F(0)  = 1. (1.7) 
cr 

From the constancy of the m o m e n t u m  flux through the jet cross section including the initial section at the 
slot exit, 

o o  (3o 

f az = 2= f(F'(w)) = 2 boropV 2, 
0 0 

where V = v ( ra)  is the radial gas velocity, we find that  the quanti ty u0 does not depend on r, and the radial 
velocity of the radial jet in the plane z = 0 is given by 

- = V ] (1.s) 

Thus, the max imum (over the cross section) velocity of the radial jet varies in inverse proportion to 
the distance from the source 

Subst i tut ing (1.5) and (1.7) into the equation of motion (1.3), we have 

F '2 + F F "  + (ae t k ta2 )F  ' '  = 0. (1.9) 

Choosing the unknown constant c~ from the condition a 2 = 1/(2~etkt) and integrating (1.9) subject  to the 
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boundary condition F"(~o = 0) = 0, we obtain the equation 

2FF'  = F", 

which has a solution 

F(~)  = tanh 90. 

Finally, for the velocities u and v from relations (1.5), 
solution 

1) ~--- m 

(1.9') 

(1.10) 

(1.7), and (1.10) we obtain the self-similar 

u = u ~ 1 7 6  -- tanh2 ~o); (1.11) 
F 

uoro ((1 - tanh 2 ~o)~o - tanh ~,). (1.12) 
7"O" 

According to the experimental  data,  the single empirical constant of the theory is ~r ~ 8.3, which corresponds 
to an angle of 6 ~ for which the  radial velocity reaches half its maximum value on the axis. 

Kinetic Equation for Carbon Clusters in the Radial Jet. We s tudy the motion of clusters in the gas flow. 
Because of the electrode erosion, a certain amount  of carbon atoms and ions enters the gas jet issuing from the 
electrode gap. At temperatures  corresponding to the electrode temperatures,  the  degree of ionization is small 
and, with distance from the arc axis, it decreases further as a result of recombination. Association of atomic 
particles to form carbon molecules C2, C3, etc., i.e., carbon clusters, begins even in the electrode gap. For 
the steady flow beyond the electrode gap, this process can be described by the following system of continuity 
equations for clusters of any size: 

krn r 

div (nkVk) = ~ Kk_j , jnk_jnj  -- ~_, Kkjnknj  -- Ifkkn~ = Gk. (1.13) 
J J 

Here nk is the number  density of k-mers, Vk is their velocity, which includes the averaged gas-flow velocity and 
the diffusion velocity of k-mers, Kij is the  constant of formation of an (i + j ) -mer  upon collision of an i-met 
and a j -met ,  km = k[2 for even k and k~ = ( k -  1)/2 for odd k, the  first term on the  right side of the equation 
describes the formation of a k-mer from smaller clusters, the  second te rm is the  incorporation of k-mers into 
clusters of larger sizes upon their  collision with clusters of size j ,  and the last t e rm takes into account that  
collision of two k-mers leads to the death of each of these and to the  formation of one 2k-mer. Relation (1.13) 
does not contain terms responsible for monomolecular decay of the  clusters formed. This means that ,  in the 
presence of a large number  of internal degrees of freedom, the  bond energy released upon cluster coagulation 
is distr ibuted among different modes, and the cluster is then thermalized in collisions with the  buffer gas. 
Furthermore, the experiments of Hunter et al. [9] showed that  carbon clusters of various structures do not 
break up during scattering by gas targets even at relative energies of the order of 100-150 eV. 

The kinetic operator (~k satisfies the obvious relation 

~ k G k  = 0 ,  (1.14) 
k 

which reflects the conservation of the total mass of carbon clusters. The  total number  of carbon atoms at a 
certain point of the  jet r, z is 

nc(,, z) = E knk( , z). (1.15) 
k 

We consider the left side of Eq. (1.13). For a turbulent  jet ,  molecular diffusion can be ignored. For a 
radial jet in the boundary-layer approximation,  in which the turbulent  diffusion across the jet is much larger 
than the longitudinal diffusion, Eq. (1.13) has the form 

02nk (1.16) 1 0(nku )+ ( kv)=Gk+ oOz2, 
r Or 

where UD = mob(r)um is the coefficient of turbulent  diffusion, and the coefficient b(r) = ktr, as well as ut, is 
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constant across the jet. Multiplying Eq. (1.16) by k and summing up all k with allowance for the continuity 
equation (1.2), we obtain 

u (nC) + v (nc)  = "O Oz 2 �9 (1.17) 

As for the flow velocities u and v, we shall seek a. solution to the equation of the concentration field (1.17) in 
self-similar form 

g o r o  f i t"  
nc( r , z )  = n c ( r , ~ )  = - - e ( q o ) ,  ~ = - -  (1.18) 

?" Z 

Substituting this relation into (1.17) and using relations (1.5) and (1.7) for the velocities u and v, for O(qo) 
we write 

2 0 F  + *O' = 0, , = neD (t.19) 
ae t  

Here ~ is the Schmidt turbulent number, which depends on the flow type; we assume that  ~ = i (for an 
axisymmetric gas jet,  ~ ~ 0.75). Then, with allowance for relation (1.9% Eq. (1.19) becomes 

6(O'/O) = F" /F ' ,  O(V) = (F ' (v) )  1/6. (1.20) 

Thus, in the turbulent  radial jet,  the distribution profile of a small additive behaves similarly to the 
profile of the radial velocity of the flow. The condition of conservation of carbon mass flow leads to 

oo oo 

f = o ,  dz = 2 bo,0NoV, 
(7 

0 0 

where Nc is the number density of carbon atoms at the slot exit and No = Ncr 
Note that  for excess temperatures (T - Too) in the radial jet,  we can obtain a solution similar to the 

solution for the carbon additive concentration (1.18): 

T - Too ro 
To - Too ~ --'r (1.18') 

To study further the kinetic equation (1.16), we introduce the relative size distribution of clusters: 

nk 
ck = - - ,  ~ kck = 1. (1.21) 

nc k 

We use the following strong but reasonable assumption: because of the turbulent mixing across the jet, 
the relative concentrations depend only on the longitudinal coordinate r. With allowance for the relations 
for the velocities u and v and for the carbon density no,  the kinetic equation (1.16) for the dimensionless 
concentration, subject to the boundary conditions ck = c~: for r = r0, takes the simple form 

dck N c r 0 (  k" Oo ) 
drlro -- V ~-" l t 'k-J ' JCk-jcJ-  ~ I ' fk jckcj -  Kkkc 2 . (1.22) 

j=l j=l 

Below, we shall assume that  r~ = 1 and c~, = 0 for all the remaining k. 
Equation (1.22) describes cluster formation in radial jets. It can be extended, however, to a fairly wide 

class of quasi-one-dimensional flows: 

dck - nc(r)ro ( km oo ) 
d l,o u(r) Kk-S,jck-j j- gksc ci- Kkkc  . (1.22') 

j=l j=l 

Here, the ratio of the local density of carbon no(r)  to the carrier gas velocity u(r) is used instead of the 
constant parameter N c / V  for a radial turbulent jet. For a wide class of flows, this ratio has the form 

7o ' 
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where 7/is an empirical parameter that depends on the type of flow. 
2. Cho ice  of  R a t e  C o n s t a n t  for C a r b o n - C l u s t e r  F o r m a t i o n .  To solve the kinetic equations 

(1.22) and (1.22'), it is necessary to know the rate constants of cluster formation Kii. Note that ,  at present, 
theoretically founded rate constants are not available, and, furthermore, the mechanism of cluster formation 
has not yet been understood. One of the widely used assumptions of fullerene formation by evaporation of 
large fragments of graphite planes followed by the formation a polyhedron was disproved experimentally [20]. 
It was shown that  with evaporation of an electrode made of graphite sections of pure carbon C 12 and 13, the 
resulting fullerenes had a mixed isotope composition that  corresponded to the complete mixing of atoms in 
the electrode gap. This is only possible when the initial state of the condensed vapor is monoatomic. 

It was established [10] that  carbon clusters exist in the form of several groups of spatial (structural) 
isomers, which are linear chains, single rings and polyrings (plane structures), and spherical hollow fullerenes. 
Figure 3 shows the qualitative structure of some of these formations. With the same number of atoms, 
clusters k can take different shapes, i.e., they can break into groups of structural isomers [10]. In addition, each 
structural group can consist of a large number of isomers that  differ in shape, number of atomic bonds, number 
of dangling bonds, degree of vibrational excitation of numerous vibratory states, etc. All these parameters 
affect the cross sections of cluster collisions with each other and with atoms of the ambient gas, the reactivity 
of clusters, velocities of intermolecular transitions, or decay velocities of clusters during collisions. 

A simple and clear model for the formation of carbon clusters is required. In our opinion, this model 
should be based on features of the cluster structure, which allow one to describe correctly cluster collisions with 
each other and also the reactivity of clusters, which depends greatly on their structure, degree of excitation, 
gas temperature, etc. Precisely this reactivity ultimately determines the fine structure (magic numbers) of 
the size distribution of clusters. 

In this paper, we propose a simple model for collisions of carbon clusters. According to [9, 10], clusters 
Ck are linear chains for k < 10, monocycles for 10 < k < 50, binary cycles for k /> 20, ternary cycles for 
k >/30, and fullerenes for k > 30. The cross sections of their collisions are studied using the classical approach. 
We assume that  the diameter of the carbon atom is dc = 0.155, and the length of the C-C bond is lc = 0.14 
nm. In this case, the gas-kinetic cross section for collisions of carbon monomers is trll = ~ra~ c = 0.0754 nm 2. 

In the gas phase, the clusters move at thermal velocity, colliding with atoms of the ambient gas and 
with each other, and rotate. We assume that the rotational degrees of freedom of the clusters are in equilibrium 
with the translational degrees of freedom of the clusters and the carrier gas. 

The cross sections for collisions of clusters Ck with He atoms w-re determined by yon Helden et al. [10] 
from mobility measurements, and they agree well with the results obtained by the Monte Carlo method. In 
the calculation it was assumed that  helium and carbon atoms are hard spheres. The orientations of clusters of 
different shapes relative to the motion of helium atoms were averaged. The data of [10] for the cross sections 
of collisions of helium atoms with linear and circular clusters and also with hollow fullerenes are shown in Fig. 
4 by curves 1-3. In addition, the figure shows the data of our calculations for hypothetical compact clusters 
with close packing (curve 4) and for collisions of circular clusters (curve 5) and fullerenes with monomers C 
(curve 6). For atoms and small clusters, collision-free flight through cyclic clusters is possible. Helium atoms 
"see" a small vicinity of the perimeter of linear and cyclic carbon clusters. This is responsible for the linear 
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dependences of the cross sections of He + Ck collisions on k. The linearity of the cross section of collisions of 
He with spherical hollow fullerenes is explained by the fact that  carbon atoms are located only on the fullerene 
surface, so that  the cross section increases linearly with increase in k. The cross sections of collisions of carbon 
clusters with carbon monomers C differ insignificantly from the cross section of collisions with helium atoms 

and vary linearly with increase in k. 
To describe the interactions of fullerenes with one another, one should s tudy collisions of noncompact 

structures with one another. The collision cross sections for fullerenes, which are compact  spherical particles, 
are determined fairly simply. For fullerene C60, the radius at which the carbon atoms are located is r60 = 
0.355 nm. Hence, the gas-kinetic cross section is 

IrP~o = ~r(r60 + dc /2 )  2 = 7.79~n = 0.5877 nm 2. 

For the other fullerenes, using the results of [10], we can obtain the semiempirical relation 

lrR~ = ~(rk q- de /2 )  2 = (3.71 q- O.101k)o'n, 
i.e., the gas-kinetic cross section for fullerenes varies linearly with change of its number. 

A more complicated situation arises for collisions of linear clusters (chains) and cycles. Linear and 
plane clusters are in rotational motion. During the time of flight v of cluster Ci past cluster Cj, the linear 
cluster with size i is able to rotate through angle ai. Estimation shows that 

~- = 2( /~ + R i ) / ( v i i )  = 2((/~ + R i ) / ( v c ) ) ( i j / ( i  +j) )1/2 ,  ai = Twi, 

where wi = (2(E, . ) /J i )  1/2 is the angular velocity of rotation of the ith cluster, (vii) is the average relative 
velocity of the clusters, Ri and R i are the radii of the carbon clusters, which depend on the mass number and 
isomer structure of the clusters, ( E r / ~  k T  is the average rotational energy of the cluster, and Ji ~ Mcl~ i3 /12  
is the characteristic moment of inertia of the cluster. As a result, for linear and cyclic clusters, we obtain 

>/r/2. 
Thus, to calculate collisions of a linear cluster, we use the effective cross section of a freely oriented 

disk or of a sector with angle a and with radius determined by the linear size of the chain. Similar calculations 
for circular and polycyclic clusters showed that, because of rotation, clusters, except for monomers, cannot 
pass by them without collision. Therefore, circular and polycyclic clusters collide as spherical particles. 

In this paper, for paired collisions of a carbon i-mer with a j -mer we use the cross sections o'ij = 
~r(Ri + Ri)  2 referred to the collision cross section of monomers cr11. Figure 5 shows some cross sections for 
collisions of carbon clusters of various structures with a monomer C (curves 1-3), a single ring C20 (curves 5, 
7), and a fullerene C60 (curves 4 and 6) related to the collision cross section of carbon monomers: curve 1 
refers to C + Ck (linear clusters), curve 2 to C q-Ck (single rings), curve 3 refers to C q-Ck (fullerenes), curve 4 
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to C60 + Ck (fullerenes), curve 5 to C20 + Ck (fullerenes), curve 6 to C60 + Ck (rings), and curve 7 to C20 + Ck 
(rings). 

The above results are approximate. To determine more accurately collision cross sections for carbon 
clusters, one should calculate collisions by the Monte Carlo method using averaging over orientations and 
rotational velocities of clusters and taking into account the isomer structure of polycycles, the difference of 
their shape from regular circles, and vibrational excitation. Nevertheless, this would not change the following 
main conclusions: 

(a) the effective cross sections for collisions of carbon atoms with clusters Ck of any radius vary linearly 
with increase in k but at different velocities for linear, plane, and spherical clusters; 

(b) the effective cross sections for collisions of linear and plane clusters Ck with one another bear a 
quadratic relationship to k; 

(c) the effective cross sections for collision of fullerenes Ck vary linearly with k. 
Thus, carbon clusters differ significantly from clusters of metals or noble gases, which have compact 

structures and whose collision cross sections depend on k as k 2/3 (curve 4 in Fig. 4). As is shown below, 
precisely the nonmonotonic complex dependence of the cross sections of collisions of carbon clusters with one 
another is responsible for the experimentally observed features of size distribution of the clusters. 

The rate constants for collisions Kiy have the form 

Kij = vcr + j)/ijo'ijPij, (2.1) 

where vc = (8kBT/~rMc) -a/2 is the thermal velocity of carbon atoms, Mc is the mass of a carbon atom, and 
Pij is the probability of formation of a cluster with size (i + j )  upon collision of an i-mer with a j-mer. 

The reactivities Pff require special study using the methods of quantum chemistry. It is necessary 
to take into account the isomer structure of the clusters, the number of saturated and dangling bonds, the 
vibrational and electron states, the formation of an intermediate complex and its stabilization in collisions 
with the carrier gas (which takes the heat of the reaction), and intramoleeular transitions, which lead to the 
formation of new bonds, etc. Solution of this problem is presently unrealizable and is not the goal of this paper 
(Bernholc and Phillips [6] studied the reactivities for small clusters in the Pol~.nyi-Br6nsted approximation, 
and Creasy [7] performed a phenomenological account of stabilizing collisions with a carrier gas). Below we 
shall restrict ourselves to only simple approximations. 

Obviously, at high temperatures (T >t 3000 K) in a dense gas, the probabilities Pij(T) are fairly low 
and decrease with further rise in temperature. This statement follows immediately from the law of acting 
masses, because the equilibrium in this case is shifted toward dissociation products [21]. In the region of 
T ,-, 3000-1000 K, the probabilities Pij(T), varying slowly, reach a maximum value and, with further decrease 
in temperature, they decrease again. 

In this paper, we assume that  Pff = 1 for all i and j that  are not equal to 60 and 70 and for some other 
stable fullerenes. For the indicated i and j ,  the probabilities are considered constant (Pij < 1). A comparison 
with the experimental data made it possible to find the empirical value of Pi.6o. In some cases for small 
unstable fullerenes, the probabilities Pii were specified differently for even and odd numbers i and j ,  and this 
led to alternation of even and odd clusters Ck for k/> 30, as observed in experiments. 

3. K ine t i c  E q u a t i o n s .  Equations (1.22) do not take into account the isomer composition of clusters. 
The concentration ck is the overall (for all isomers) fraction of clusters composed of k atoms. For simplicity, 
we assumed the existence of only two types of clusters, single rings and fullerenes with more than 30 atoms 
per cluster, and the collision cross sections were chosen according to the experimental data of [10]. 

The stationary continuity equation (1.22) in this form is completely equivalent to the nonstationary 
kinetic equation with the dimensionless time z. Numerical solution of Eq. (1.22) involved no difficulties. We 
used an implicit solution scheme in which some terms on the right side of the kinetic equations were taken 
from the previous "time" layer. The calculations were performed in the range of 1 < x < 2500 with steps 
Az = 0.05 or 0.1. A check of the difference of the sum ~kck from unity at each step with the subsequent 

k 
correction of all the occupancies ck showed that the chosen system was stable, and the calculation error did 
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not exceed fractions of a percent for any k. The solution was sought for mass numbers k from 1 to 120, so that 
the occupancy was, in essence, the total occupancy of clusters whose sizes are equal to or larger than 120. 
The test solution of the system with cross sections for compact clusters tends to the well-known log-normal 
relations of [22]. 

Figure 6 shows two initial size distribution of clusters at distance z = 50. The first distribution 
corresponds to the case where only carbon monomers (c o = 1, c~ = 0 for k > 1) issue from the electrode gap, 
and the second distribution corresponds to the case where half of the carbon atoms are initially in the form of 
dimers C2 (c o = 0.5, ~ = 0.25, c[ = 0 for k > 2). It is evident that  the mass spectra depend markedly on the 
initial distribution only for values of k of the order of 10-15. For larger values of k, the distributions practically 
coincide. This indicates that ,  in the given formulation, the initial distribution is relatively insignificant for the 
size distribution of large clusters. 

The variation in the size-distribution function for clusters is given in Fig. 7 (curves 1-3 correspond 
to the dimensionless distances X = 25, 50, and 100, respectively. Evidently, in the range from 20 to 40, 
a characteristic dip occurs which is due to large collision cross sections of cyclic clusters. Small clusters 
that  enter this range of sizes pass it rapidly, supplementing the cluster distribution in the fullerene range. 
The distribution function becomes nonmonotonic. With increase in distance, the fraction of small clusters 
decreases, whereas, in the second wide maximum located behind the dip, the fraction of clusters increases. 
Against the background of this nonmonotonic distribution function for relatively stable fullerenes C60, C70, 
C76, CTs, etc., pronounced peaks occur, which grow with increase in distance from the source. 

The main goal of the operation of a "fullerene factory" is to produce fullerenes C60, C70, etc. Therefore, 
an important characteristic is Yk(X) = kck(X), which is the yield of clusters of the given size k (X = ARc~to, 
where Rr is the radius of the reactor). 

Figure 8 shows the dependence of the yield Y60 of fullerenes C60 on the distances X for various values 
of the parameter P = P6o,i. For P = 0 (curve 1), monotonic growth of the fullerene yield with increase in X 
is observed. In this case, the fullerene yield tends asymptotically to ~0.26. Peaks that  correspon d to other 
stable fullerenes behave similarly. Curve 1 shows that the maximum value of the achievable yield of fullerenes 
C60 with the given cluster distribution is y ~ x  ~ 0.26. More accurate allowance for the isomer structure and a 
certain variation in the cross sections of collisions of clusters with one another do not lead to a marked change 
in the quantity y ~ x ,  which is independent of the type of cross section and depends only on the collisional 
constants K O. Even the monomolecular decay of the resulting clusters has an effect not on y ~ x ,  but only 
on the rate of at tainment  of the asymptotic value. 

The dependence for Y60 at P = 1 is shown by curve 2. The yield of k-mers at distance Xk reaches 
a maximum value Yk m~x and then decreases monotonically. The value of y~ax in this case is considerably 
smaller than the experimental values. 
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Curve 3 illustrates the yield of fullerenes C60 for the intermediate value of the parameters P = 0.2. In 
this case, Y6~ ~x = 0.12 for X60 ~ 125, and then it decreases slowly because of the growth of unstable clusters 
of C60 to larger sizes. The fullerene yields obtained are optimal for the majority of setups of such type. The 
vertical curves in this graph correspond to the experimental data of [12]. 

Under the assumptions used above, the dimensionless coordinate z is related to the radial coordinate 
via the initial coordinates, velocity, and concentrations. For real setups, the boundary radial coordinate Rc is 
determined by the position of the chamber wall or the black-collecting shield, and the variation of the upper 
boundary of integration X with the z coordinate is related to the variation in the operating parameters. 

We write the expression for the boundary coordinate X as 

X -- n0VC~ -- Q (P)  t~CO'll pgg lrRCr0 

u0 rrt C X 2 #0I 2 RT b0 ' 

where Q is the carbon mass flow rate, a n  is the collision cross section for monomers, p is the pressure of the 
buffer gas, #g is the mole mass of the buffer gas, and R is the universal gas constant. The velocity of the gas 
jet at the exit from the electrode gap is assumed to be proportional to the axial velocity in the anode arc: 
uo = XV~ (X is a modeling parameter). As is shown below, the value of the parameter ( P ) / X  2 is close to unity. 

The experimental results of [12] for the dependences of the yield of fullerenes C60 on pressure and on 
the type of buffer gas, shown in Fig. 8, agree qualitatively with the solution of (1.22) for Pi,60 = 0.2 (curve 3). 
Figure 9 shows the fullerene yield for Pi,6o = 0.2 versus helium pressure (points 1 and 2), arc current (points 
3), and electrode gap (points 4). The calculation results (curve) agree well with experimental data (vertical 
lines). 

4. Conc lus ions .  The results obtained in Sec. 3 show that the proposed gas-dynamic model for the 
flow of a mixture of a buffer gas with carbon vapors from a contact graphite arc (a turbulent radial jet) 
and the kinetic model of carbon cluster formation in collisions with each other describe qualitatively the size 
distribution of the clusters. A nonmonotonic distribution function holds for relatively small distances from the 
source (z = 5-25). For clusters with k ~ 20-40, a characteristic dip occurs, which is due to the anomalously 
high effective gas-kinetic sections of linear and cyclic clusters. Precisely gas-dynamic sections, determined by 
the large cross section of cyclic clusters being in rotational motion, lead to the high frequency of collisions 
of relatively large clusters with one another. The model takes into account the birth of clusters of definite 
sizes with coagulation of smaller clusters and allows one to compare the local production of given species, for 
example, fullerenes C60, by various bimolecular pathways. In this case, the dependence of the probability of 
coagulation on the cluster size is not significant. 

We consider in detail processes that lead to the formation of C60. The first sum on the right side of Eq. 
(1.22) for the C60 production contains 30 members, which describe the frequencies of Ci + C60-i collisions. 
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Figure 10 gives the rates of this reaction at three different points of the flow for the same conditions as 
the size spectra in Fig. 7. The considerable difference in cross section (see Figs. 4 and 5) is responsible for 
the nonmonotonic distribution function (see Figs. 6 and 7) and for the considerable difference in frequency 
between the collision reactions. Noteworthy is the predominance of coagulation reactions of small clusters 
over coagulation reactions of "halves" with close sizes. This is due to both the sudden decrease in their 
concentration (see Fig. 7) and the presence of the relative particle velocity, which is small for collisions of 
two large clusters, in relation (2.1) for the reaction constants. Thus, even ignoring the higher reactivity of 
linear clusters compared with rings and fullerenes, we obtain predominance of reaction pathways occurring 
by the addition of small (< 10) clusters. The differences in relative reactivities obtained in [6, 8] lead to some 
differences of the distribution functions from the functions that follow from the collision characteristics of 
molecules. 

The experimental dependence of the fullerene yield on the gas pressure [13] shows a maximum that is 
absent in both the theoretical dependence and in the experimental data of [12]. This can be explained by the 
change in the flow gas-dynamics due to the transition from the radial flow to upward convective flow, which 
is not taken into account in the model. The difference between the experimental data of [12] and [13] can 
be attributed to the marked difference in dimensions between the reactors used and to the different spatial 
arrangement of electrodes in the reactors. 

We give an estimate of the region in which convective processes should be taken into account. We write 
the following equation for the vertical velocity component in a turbulent jet: 

Ov Ov 02v T - Too 
pU-~r + pV~z = PVt-~-iz 2 - pg '~-~--  (4.1) 

Here T is the gas temperature in the jet and Too is the temperature of the ambient gas. System (1.2), (1.3), and 
(4.1) should be supplemented by an equation for the temperature with boundary conditions at the electrodes 
and water-cooled surfaces of the reactor. The excess temperature (T-Too) varies slowly along the jet because 
of turbulent mixing (1.18'). We consider Eq. (4.1) on the axis of the radial jet and compare the first term on 
its left side with the last term of the right side taking into account relations (1.8) and (1.18') for the excess 
temperature and radial velocity. Introducing the "convective" radius re, for which the radial velocity u(rc) 
is compared with the cross velocity v(rc), we obtain 

rc = u 0 (  Tooro .)1/2. 
(v0 - -oo)g 

At distances larger than rc,  the streamlines of the radial jet are curved, and the jet begins to float up with a 
certain convective velocity, while the process of turbulent diffusion continues. The kinetics of cluster formation 
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is still described by Eq. (1.22'), but with the parameter q = 1. Thus, in the range r > r0, all cluster formation 
processes depend on In(x) rather than on the distance x itself. The value of rc depends on the specific features 
of the reactor (mainly on its geometric dimensions). With change in the flow regimes, the fullerene yield is 
determined by the convective radius rather than by the wall radius. 

Because of turbulent and convective processes and unsteady initial conditions, the radial flow studied 
in this paper can become unsteady and break up into a number of individual jets. Each of the jets can be 
imagined as axisymmetric turbulent flow. The integral carbon flow rate from the source remains unchanged. 
The initial jet velocities are given by relation (1.1). The dependences of the axial velocity and the vapor 
density on the coordinate along the jet axis coincide with similar dependences on the radial coordinate for 
radial flow (1.11) and (1.18). The kinetic equations (1.22) also remain unchanged. The results given in Figs. 
6-10 hold true for this flow as well. 

In the above calculations, we did not consider the difference in reactivity between the clusters and 
processes that occur after collisions of clusters with one another (stabilization of the resulting clusters with 
their structural rearrangement, annealing, and elimination of excitation by the buffer gas). These processes are 
taken into account implicitly in the model by the assumptions that the lifetime of metastable conglomerates 
of carbon is fairly large in the range studied (because of the large number of internal degrees of freedom) and 
that the cross sections and frequencies of collisions with the buffer gas are large. 

The phenomenological model presented describes well the general view of mass spectra and yield of 
fullerenes, but does not explain the character of alternation of even and odd clusters in the mass spectra. This 
alternation can be explained by allowing for the reactivities of clusters using additional experimental data or 
by calculating reaetivities for all types of isomers of even and odd clusters. Inclusion of the reactivities in Eqs. 
(1.22) and (1.22') will not complicate calculations. 
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